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Richtmyer-Meshkov (RM) Instability

e |nteraction of a material interface with a

shockwave Classical RM configuration

Shock 1

 Predicted theoretically by Richtmyer P
(1960) and shown experimentally by
Meshkov (1969) fertace

e Similar to Rayleigh-Taylor in mechanism ||

e Baroclinic vorticity generation causes

amplification of perturbations W

 Linear models for small amplitude
sinusoidal perturbations
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Applications

* |nertial Confinement Fusion (ICF)

e Critical to achieve energy break-
even

 Stellar evolution models to explain lack mgiding
of stratification
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 Aim is to develop predictive capabillitie
e Simulations key to bridging gap

between experiments, theory and S
modeling
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Ihe classical RM problem

e First model by Richtmyer tor small
amplitude sinusoidal perturbations

« Many models that work well in the
inear regime

¢ Some extensions to early non-linear
times

* No net circulation deposition

Fluid 2

From Brouillete (1990)
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Inclined interface RM

* No existing model for interface evolution

* Intrinsically non-linear from early times for modest
interface angles

* Almost constant vorticity deposition along the intertface

e Easier to study experimentally

Py Ly outflow
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Governing Equations

* \We solve the compressible multi-species Navier Stokes

eqguations
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Numerical technigue

 Miranda code developed at LLNL (Cook '07)
 Compressible, multi-species solver

« 10" order compact finite differencing (Lele '92) in space
o 4 order Runge Kutta time integrator

 LAD scheme for generalized curvilinear coordinates (Kawai
'08) tfor shock and interface capturing
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The Miranda Code

10th order Pade scheme for derivative computation

Af' = Bf

Need to solve pentadiagonal system

Two approaches
 Direct block parallel pentadiagonal solves (BPP)

* Transpose algorithm with serial pentadiagonal solves

Transpose algorithm shown to scale very well up to 65,536 processors

From Cook et. al. (2005)



seconds per time step
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Weak Scaling

The Miranda Code
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Inclined interface RM

No existing model for interface
evolution

Intrinsically non-linear from early
times for modest interface angles

Almost constant vorticity
deposition along the interface

Easier to study experimentally

Based on experimental setup In
the Inclined Shock Tube Facility
at Texas A&M

Slip walls in transverse (y)
direction

Isotropic 3D cartesian grid
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Time epochs

« Before interaction (initial condition, t = 0 ms)

Density field
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Time epochs

» First interaction of the shock and interface (t = 0.2 ms)

w
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Time epochs

* Shock fully passes through the intertace (t = 0.5 ms)
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Time epochs

 Formation of a coherent wall vortex (t = 1.0 ms)

Pseudocolor
Var: vortz
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Pseudocolor
Var: vortz
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Time epochs

o Kelvin-Helmholtz rollers (t = 2.5 ms)

Pseudocolor
Var: dilatation
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Time epochs

e Turbulent mixing (t = 5.0 ms)
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y-z Integrated vorticity
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Total baroclinic vorticity generation Total wall torque
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Effect of 3D perturbations

Q[t)Jite often, 2D RM simulations are pertformed since initial conditions are
2

Well correlated vortex rolls observed are unrealistic physically

e Want to quantify effects of 3D perturbations on top of the inclined interface

3D perturbations informed by more careful profiling of the initial condition
data from experiments

Z—perturbation
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« Kelvin-Helmholtz rollers (t = 2.5 ms)




Stanford University

e Turbulent mixing (t = 5.0 ms)
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Conclusions and Future Work

* The inclined interface RM problem was simulated for the set of
parameter values used in the experiment

* The qualitative physics of the problem are captured well and
match what is observed in experiments

* Higher mesh resolution calculations are required to get
convergence on higher order statistics

* 3D perturbations play an important role in the vortex breakdown
and mixing process

* Next step Is to make quantitative comparisons with experiments
for validation

* Characterize turbulent mixing by looking at higher order moments
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