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Richtmyer-Meshkov (RM) Instability
• Interaction of a material interface with a 

shockwave 

• Predicted theoretically by Richtmyer 
(1960) and shown experimentally by 
Meshkov (1969) 

• Similar to Rayleigh-Taylor in mechanism 

• Baroclinic vorticity generation causes 
amplification of perturbations 

• Linear models for small amplitude 
sinusoidal perturbations
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Applications
• Inertial Confinement Fusion (ICF) 

• Critical to achieve energy break-
even 

• Stellar evolution models to explain lack 
of stratification 

• Mixing in supersonic and hypersonic 
air-breathing engines 

• Aim is to develop predictive capabilities 

• Simulations key to bridging gap 
between experiments, theory and 
modeling



The classical RM problem

• First model by Richtmyer for small 
amplitude sinusoidal perturbations 

• Many models that work well in the 
linear regime 

• Some extensions to early non-linear 
times 

• No net circulation deposition
From Brouillete (1990)



Inclined interface RM

• No existing model for interface evolution 

• Intrinsically non-linear from early times for modest 
interface angles 

• Almost constant vorticity deposition along the interface 

• Easier to study experimentally

From Zabusky (’99)



Governing Equations
• We solve the compressible multi-species Navier Stokes 

equations
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Numerical technique
• Miranda code developed at LLNL (Cook ’07) 

• Compressible, multi-species solver 

• 10th order compact finite differencing (Lele ’92) in space 

• 4th order Runge Kutta time integrator 

• LAD scheme for generalized curvilinear coordinates (Kawai 
‘08) for shock and interface capturing
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The Miranda Code
• 10th order Pade scheme for derivative computation 

• Need to solve pentadiagonal system 

• Two approaches 

• Direct block parallel pentadiagonal solves (BPP) 

• Transpose algorithm with serial pentadiagonal solves 

• Transpose algorithm shown to scale very well up to 65,536 processors

Af 0 = Bf

From Cook et. al. (2005) 



The Miranda Code

Weak Scaling Strong Scaling

From Cook et. al. (2005) 



Inclined interface RM
• No existing model for interface 

evolution 

• Intrinsically non-linear from early 
times for modest interface angles 

• Almost constant vorticity 
deposition along the interface 

• Easier to study experimentally 

• Based on experimental setup in 
the Inclined Shock Tube Facility 
at Texas A&M 

• Slip walls in transverse (y) 
direction 

• Isotropic 3D cartesian grid
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Time epochs
• Before interaction (initial condition, t = 0 ms)

Density field



Time epochs
• First interaction of the shock and interface (t = 0.2 ms)



Time epochs
• Shock fully passes through the interface (t = 0.5 ms)



Time epochs
• Formation of a coherent wall vortex (t = 1.0 ms)



Time epochs
• Kelvin-Helmholtz rollers (t = 2.5 ms)



Time epochs
• Turbulent mixing (t = 5.0 ms)



Initial vorticity 
deposition

Formation of 
wall vortex

K-H rollers

Effect of  
transverse modes

Stratified  
mixing zone

y-z integrated vorticity



Total baroclinic vorticity generation Total wall torque



Effect of 3D perturbations
• Quite often, 2D RM simulations are performed since initial conditions are 

2D 

• Well correlated vortex rolls observed are unrealistic physically 

• Want to quantify effects of 3D perturbations on top of the inclined interface 

• 3D perturbations informed by more careful profiling of the initial condition 
data from experiments



• Kelvin-Helmholtz rollers (t = 2.5 ms)



• Turbulent mixing (t = 5.0 ms)



Conclusions and Future Work
• The inclined interface RM problem was simulated for the set of 

parameter values used in the experiment 

• The qualitative physics of the problem are captured well and 
match what is observed in experiments 

• Higher mesh resolution calculations are required to get 
convergence on higher order statistics 

• 3D perturbations play an important role in the vortex breakdown 
and mixing process 

• Next step is to make quantitative comparisons with experiments 
for validation 

• Characterize turbulent mixing by looking at higher order moments
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